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Background

• Currently: Data Science for Social Good fellow 
at the University of Chicago 

• Machine learning/data science application to projects 
with positive social impact in education, public 
health, and international development

My opinions are my own, not my employers

• Recently: Ph.D. in astrophysics  

• Cosmologist specializing in large-scale data analysis 

• Dissertation was on statistical properties of millions of 
galaxies in the universe



Machine Learning 
Applications

Personal assistants: 
Google Now, 

Microsoft Cortana, 
Apple Siri, etc.

Surveillance 
systems

Autonomous (“self-
driving”) vehicles

Facial recognition

Optical character 
recognition

Recommendation 
engines

Advertising
and business 
intelligence

Political 
campaigns

Filtering 
algorithms/  
news feeds

Predictive 
policing



Machine Learning?
• Machine learning is a set of techniques for adaptive 

computer programming  

• learn programs from data 

• In supervised learning, a computer learns some rules 
by example without being explicitly programmed
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Classification problem: Classify           into           or                  ?

Get examples of past          and whether they were            
or         

Use examples and features to train a model

Build features, quantities that might be 
predictive of the target (cat/dog)
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What’s the big deal?
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Representativeness
• Learning by example: Examples must be 

representative of truth  

• If they are not → Model will be biased 

• Random sampling: Probability of collecting an 
example is uniform 

• Most sampling is not random 

• Strong selection effects present in most training data
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Sparse examples in this region 
of feature space
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Predictive Policing

• Policing strategies based on machine learning: 
proactive, preventative or preventative policing 

• Aim: To allocate resources more effectively



The ‘Minority Report’ of 
2002 is the reality of today 

- New York City Police Commissioner William Bratton









Racist Algorithms are Still Racist

• Inherent biases in input data: 

• For crimes that occur at similar rates in a 
population, the sampling rate (by police) is not 
uniform 

• More responsible: Reduce impact of biased input 
data by exploring poorly sampled regions of feature 
space 



Feature 1

Fe
at

ur
e 

2

Collect more data and improve 
the model 



Pitfalls

Methodological issues: 

• Selection effects in input datasets used for training 

• Aggregation also provides information to a model 
about individuals 

• Removing controversial features does not remove all 
discriminatory issues with the training data 
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Filtering

• An avalanche of data necessitates filtering 

• Many approaches:  

• Reverse chronological order (i.e., newest first) 

• Collaborative filtering: People vote on what is 
important 

• Select what you should see based on an algorithm
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Facebook News Feed

1st

Ranked list of 
news feed items

ModelFeatures

List of potential 
news feed items

Feature Building 
• Is a trending topic mentioned? 
• Is this an important life event? e.g. Are words like congratulations mentioned?   
• How old is this news item? 
• How many likes/comments does this item have? Likes/comments by people I know? 
• Are the words “Like”, “Share”, “Comment” present?   
• Is offensive content present?



Facebook News Feed

• Facebook decides what updates and news stories you get to see 

• 30% of people get their news from Facebook [Pew Research]

1st

Ranked list of 
news feed items

ModelFeatures

List of potential 
news feed items



Emotional Manipulation

• We know about this because Facebook told us

Positive 
expressions

Negative 
expressions

Positive 
mood

Negative 
mood



Political Manipulation

• Experiment that increased turnout by 340,000 voters in 
the 2010 US congressional election



Behavioral Manipulation

https://firstlook.org/theintercept/document/2015/06/22/behavioural-science-support-jtrig/

https://firstlook.org/theintercept/document/2015/06/22/behavioural-science-support-jtrig/
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with the training data 

Usage issues: 

• Proprietary data and opaque algorithms 

• Unintentional impacts of increased personalization e.g. filter bubbles 

• Increased efficacy of suggestion; ease of manipulation 

• Need a system to deal with misclassifications
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Detection
• How detectable is this type of engineering? 

• Are these examples the tip of the iceberg?  



How we detect this? 
What can be done?



Policy

• Stronger consumer protections are needed 

• More explicit data use and privacy policies 

• Capacity to opt-out of certain types of 
experimentation 

• Long-term: Give up less data 

• Open algorithms and independent auditing: Ranking 
of feature importances
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Black box analysis

Inputs:

Generate test 
accounts 

Use real 
accounts

Outputs:

Compare 
outputs of 
algorithm  

Why was one 
item shown to 
a given user 

and not 
another?



Black box analysis: XRay
• Nice example of how this type of analysis can be used 

to increase transparency [Usenix Security 2014] 

• Uses test accounts on e.g. Gmail and feeds keywords 
and then records what ads are served  

http://xray.cs.columbia.edu/
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Moving Forward
• To practitioners:  

• Algorithms are not impartial unless carefully designed 

• Biases in input data need to be considered 

• To advocates:  

• Accountability and transparency is important for algorithms 

• We need both policy and technology to achieve this

Thanks!
twitter: @redshiftzero

email: jen@redshiftzero.com

mailto:jen@redshiftzero.com

